
ColdFusionJournal.comCFDJ FEBRUARY 200326

X
ML has already solidified its position in the Web

application space as the solution for data extensibility,

and we are becoming increasingly aware of Web

services and its potential to revolutionize the distributed application

architecture. What we have yet to discover is exactly how this is

all going to happen.

We know that the Web services architecture allows for easy
integration between applications built independently from each
other. We also know that sometime in the near future when we
want to extend our applications, we will have a system
in place that allows us to methodically search and con-
sume a service from a wide selection of services.

With the overwhelming success of WSDL and the pro-
posed UDDI specification, we have begun to work toward
the goal of dynamic discovery and invocation of Web ser-
vices. What we need to do now is to begin to think about
what it actually will take to make these services truly
dynamic. Regardless of what method we choose for dis-
covery, our applications will need to go beyond their cur-
rent scopes in order to truly make Web services dynamic.

Most ColdFusion developers know what WSDL is, but may
not have spent a great deal of time or resources trying to figure
out how it works – and why would you? CFMX makes things so
easy; in most cases it would be a waste of time to learn WSDL in
depth. Because WSDL is built on XML, and CFMX now has
extensive support for XML, we can use things like XPath to help
us discover the properties of a given Web service.

This article will give a brief introduction to the wheres and hows
of WSDL, and we’ll use XPath to search the WSDL file to discover the
properties for a given Web service. For demonstration purposes we
will apply our logic to a “Simple” Web service, which works with and
returns simple data types like strings. We will not be working with
complex data types such as arrays and custom data types. Although
complex data types are required in order to handle more intricate
Web services, we must walk before we can run.

XML and CFMX
Although true support for XML is new to CFMX,

XML itself has been around for quite some time. In
fact, there are many techniques available for working
with XML, one of those being XPath. XPath is a W3C
recommendation that allows for broad XML search-
ing. To use XPath with CFMX you use a function
called XMLSearch. XMLSearch() takes two arguments:
first the XML document and second the XPath
expression.

By Ron West

web services

Dynamic invocation of simple services

Stretching Web Services
to
ItsLimits

ColdFusionJournal.com 27FEBRUARY 2003 CFDJ

In CFMX there are a few options for creating an XML doc. In
our case we will use cfhttp to get the WSDL file. XMLSearch
returns an array of nodes that match your criteria. The array that
is returned from the XMLSearch() function is basically an array
of structures that describes all of the properties of the XML node.
The following structure keys are available from a successful
XMLSearch():
• XMLName: The name of the root element found
• XMLNsPrefix: The namespace prefix for this element
• XMLText: Any text contained within the open end tag for this

element
• XMLComment: Any XML comments made for this element
• XMLAttributes: A structure of name-value pairs for each (if

any) of the attributes for this element
• XMLChildren: A structure containing all of these keys for any

children elements

Using these structure keys we will have all of the information
needed to discover the properties for this service. To gain more
insight on how XPath is used, go to www.w3c.org/xpath. I realize
that this is a brief description of XMLSearch and XPath, but once
we are done here, you should have more than enough code to
test this on your own.

To perform a simple search, such as a node existence test,
you could perform the following in a script block:

MyVar = XMLSearch(myXMLDoc, "//binding");

If your XML document contains a node (element) named
“binding” anywhere in the document tree, MyVar would be an
array with length of at least one. Likewise if we wanted to find all
nodes named “operation” that have an attribute named “attr”
with value “hello” we could write the following code:

MyVar = XMLSearch(myXMLDoc, "//operation[@attr=’hello’");

Basically the expressions can be equated to where clauses in a
standard SQL statement like: Select * from XML where node =
“operation” and attributeName = “attr” and attributeValue =
“hello”.

WSDL Architecture (the Wheres)
The first task for working with Web services is to discover

available services. With UDDI still in the “discovery” stages, we
can look to our friends over at XMethods.net. The good folks over
there have provided us with numerous Web services. To reduce
headaches, we will concentrate only on RPC-style Web services.
Let’s take a look at the “BorlandBabel” Web service. The service’s
WSDL file can be found at: http://ww6.borland.com/webser-
vices/BorlandBabel/BorlandBabel.exe/wsdl/IBorlandBabel.

The <description> element is the root element, where you see the
namespaces for the collective properties of the WSDL file. We will not
cover namespaces in this article (even though they are important, we
can proceed without having to go into specifics). Next, the <message>
element that defines the structure of the messages sent between the
client and the host: we have four <message> elements with the
names: “BabelFishRequest”, “BabelFishResponse”,
“SupportedLanguagesRequest”, and “SupportedLanguagesResponse”.

Notice three of the <message> elements contain <part> elements.
The <part> element defines the encoding type for that particular

message (it is either a response message or call message). A message
without a <part> child element (“SupportedLanguagesRequest”)
takes no parameters. After that, we have the <portType> element,
which defines the parameters for all operations available. The
<portType> attribute “name” is used as internal reference, which we
will tie together a little later.

Now comes the <binding> element, which is used to provide
the operation details. In our example we see two <operation>
elements inside the <binding> element, which define the input
and output parameters for the services named “BabelFish” and
“SupportedLanguages”. Finally we have our <service> element,
which contains the names of the services available and the loca-
tion of the service URI.

Now that we have defined the basics of the WSDL file, we can
build an organized description of all of the properties of the Web
service by mixing in some XMLSearch(). XMLSearch() can be
used to search through an XML document using XPath syntax
and expressions. Let’s get started.

Dissect the Service Properties (the Hows)
There are five basic steps or pieces of information required to

consume a Web service:
1. Check style of Web service (make sure that we are working

with an RPC-style service)
2. Discover the name of the service
3. Discover what ports (methods) are available for this service
4. Discover what input, output, and/or fault messages are need-

ed for each port (method)
5. Determine the data type for each message

(All references below can be found in Listing 1.)
1. Notice the search string: “//*[contains(name(), ‘binding’)]

[@style=‘rpc’]”. This means find all nodes that contain the
name “binding” and have an attribute named “style” whose
value is “rpc”. If the length of the array is greater than 0, we
have a valid service.

2. In order to enhance our documentation we will now find the
name of the service. One feature available in WSDL that can be
useful here is the < documentation > element. It is used to
return a human-readable description for any element. In this
case it would have been nice to have a < documentation> ele-
ment that would describe the service for us. We could then store
that with the service so that users knew what the service was
designed for. To find the service name, simply use “//*[con-
tains(name(), ‘service’)]”. We gain access to the service name
with XMLAttributes.name. We can use this service name to clas-
sify our Web service within our application.

3. Now for the methods. We use “//*[contains(name(), ‘bind-
ing’)]/*[contains(name(), ‘operation’)][@name]” to return
our methods array. It is possible for a service to have multi-
ple methods (and many do). For each method available,
there will be one node in our array. To get the names of the
methods, we loop through the array and get the value for
the attribute “name”. From here you would begin to store
the data into whatever storage facility was planned. You
might store each method in a database and assign it a
method ID, which could be used later for the properties of
the method.

ColdFusionJournal.comCFDJ FEBRUARY 200328

web services

4. Next we want to discover what input, output, and/or fault
messages are required for each method. To do this we
access the properties of each child node for the methods
defined in step 3. We make another call to XMLSearch()
with “//*[contains(name(), ‘binding’)]/*[contains(name(),
‘operation’)][@name='#methodName#']/*”. Notice we have
dynamically supplied the method name in the search string
(“@name=’#methodName#”). In doing so, we will have
direct access to the children elements for that method. The
names of the children elements will be input, output, or
fault. (You can ignore the “soap:operation” node as this
does not reference a message type for this method.)

Services are not required to define both an input and
output and are certainly not bound to using a fault mes-
sage. It is possible to make a call to a service and not be
required to supply an input message and simply receive an
output message or vice versa. It is important to remember
this key feature when designing dynamic systems, as you
would need to abstractly handle a number of possibilities.

5. Finally, we want to discover the data types for each of the
messages returned from step 4. This is a little tricky, but if
you have hung in so far this should not be difficult to fol-
low. The data types are stored separately from the message
ports. We first need to discover the internal reference to the
data types for each message by looking into the details of
the <portType> element. We make the call “//*[contains
(name(), ‘portType’)]/*[contains(name(), ‘operation’)]
[@name=‘#methodName#’]/*[contains(name(), ‘#param
Name#’)]” to gain access to the parameters of the portType
for the operation.

In SQL terms, the line would read something like this:
“Select * from XML where name like ‘input’ and parent like
‘BabelFish’ “whose” parent like ‘portType’. One of the attrib-
utes of the returned element will be “Namespace”. The
“Namespace” attribute defines the internal reference to the
message definition, which will have the data types. (It is not
necessary to fully understand the use of namespace for the
simple service, but in order to work with complex data
types this will become an important concept, as it will
determine where the data-type definitions are located.)
Use the namespace to get at the details for each <part> ele-
ment of this message. Each <part> element will have two
attributes that describe its functionality – the attribute
“name” and the attribute “type”. The type attribute here
represents the encoding type of the message part. It is pos-
sible to have multiple parts for any given input message.
Each part may have a different data type. There is only one
part to an output message. ColdFusion logically maps the
encoded data types to ColdFusion data types. The matrix
for this mapping is located in the ColdFusion documenta-
tion.

What Should We See?
When things run smoothly – and I hope they did for you –

you should get the following results for the code provided in
Listing 1:
1. A service named “IBorlandBabelservice”

2. Two port (methods) with the following properties
a. BabelFish

i. Input message with parts:
1. TranslationMode (of type string)
2. Sourcedata (of type string)

ii. Output message (of type string)
b. SupportedLanguages

i. Input message with 0 (zero) parts
ii. Output message (of type string)

You now have all of the information to dynamically call this
service and systematically incorporate it into your application.
The metadata for this service can be stored in a database and
invoked anywhere in your application. An interesting aspect of
this service, and the reason I chose it over the original
BabelFish service, is that it uses data returned from one
method to instantiate another. The data returned from the
“SupportedLanguages” method is a list (whitespace delimited)
that contains all languages supported in the call to the
“BabelFish” function. To use this service you simply call the
SupportedLanguages, and the return variable could be used to
populate a selection list for the translation mode in the input
message of the BabelFish method. The particular technique
here is advantageous over the original BabelFish service
because this service provides an automated updating method.
If any new languages are supported, they are simply returned
in the SupportedLanguages method call. Although we have
not outlined a solution to this procedure here, it deserves
mention because in the future this will become a common
practice.

Incidentally, if you are interested in attempting to use this
code with other Simple Web services and are not sure if your
Web service fits into this category, you can add the following
code to your app: //*[contains(name(), ‘complexType’)]. If the
XMLSearch with this string returns an array with length
greater than 0, you are not working with a Simple Web service.

Go Forth from Here
Hopefully this article sets the wheels in motion. Developers

and software vendors are adopting Web services at a rapid
rate. Once UDDI is solidified and there is a common interface
for discovering Web services, we will be left only with dynamic
invocation. Now that CFMX natively supports both Web ser-
vices and XML, we are one step closer to our goal. “Computer,
find the best rate for my snowboard weekend. Oh yeah, and
make sure the resort has lots of snow.” We truly live in a
remarkable time.

About the Author
Ron West is a senior applications developer with PaperThin,
Inc., a privately held Web content management vendor head-
quartered in Quincy, Massachusetts. Ron has been working
with Web applications for seven years. He is one of the directors
of the Rhode Island ColdFusion User Group, and is an estab-
lished writer for several industry publications.

rwest@paperthin.com

ColdFusionJournal.comCFDJ FEBRUARY 200330

Listing 1:
<cfscript>

//serviceURL = attributes.serviceURL;
serviceURL =

"http://ww6.borland.com/webservices/BorlandBabel/BorlandBabel.exe/wsdl/IBor
landBabel";

serviceData = structNew();
</cfscript>
<!--- // get WSDL File --->
<cfhttp url="#serviceURL#" method="GET" resolveurl="false">
<!--- // create CFML XML document --->
<cfset wsdl = xmlParse("#cfhttp.fileContent#")>
<cfscript>

// test for RPC validity
str = "//*[contains(name(), 'binding')][@style='rpc']";
rpcArray = XMLSearch(wsdl, str);
if (arrayLen(rpcArray))
{

// discover service name
str = "//*[contains(name(), 'service')]";
serviceArray = XMLSearch(wsdl, str);
if(arrayLen(serviceArray))

serviceName = serviceArray[1].XMLAttributes.name;

// discover the methods
str = "//*[contains(name(), 'binding')]/*[contains(name(), 'opera-

tion')][@name]";
methodArray = XMLSearch(wsdl, str);
// for each method returned get the properties for this method
for(i=1; i lte arrayLen(methodArray); i=i+1)
{

mStruct = methodArray[i];
// method name
methodName = mStruct.XMLAttributes.name;
// write some code here to store this off into DB or wherever

[methodId = storeMethod(methodName);]
// discover the children nodes which will be our input, output

and fault codes

str = "//*[contains(name(), 'binding')]/*[contains(name(),
'operation')][@name='#methodName#']/*";

mDetailsArray = XMLSearch(wsdl, str);
for(j=1; j lte arrayLen(mDetailsArray); j=j+1)
{

param = mDetailsArray[j];
paramName = param.XMLName;
// store these with the service [messageId =

storeMessage(methodId, paramName);]
// discover the internal reference for each message
str = "//*[contains(name(), 'portType')]/*[contains(name(),

'operation')][@name='#methodName#']/*[contains(name(),
'#paramName#')]";

portData = XMLSearch(wsdl, str);
// if we have a port definition
if(arrayLen(portData) gt 0)
{

ref = listLast(portData[1].XMLAttributes.message, ":");
// discover the datatypes with the internal reference to

the message element
str = "//*[contains(name(), 'message')][@name='#ref#']/*";
partArray = XMLSearch(wsdl, str);
dump(partArray);
// for each message discover it's parts (if any)
for(c=1; c lte arrayLen(partArray); c=c+1)
{

part = partArray[c];
partName = part.XMLAttributes.Name;
partType = listLast(part.XMLAttributes.Type, ":");
// store each of these with the message data for this

method
}

}else // we did not have a port definition
msg = "No port defined";

}
}

}else // we do not have a valid RPC Style service
msg = "Not a valid RPC Style Web service";

</cfscript>

UPDATE statements don’t take more than 5–10 minutes to code
(for a developer who is comfortable with basic SQL) – a <CFIN-
SERT> or <CFUPDATE> tag takes a little less than half that time at
best.

On the downside, <CFINSERT> and <CFUPDATE>:
• Can be more difficult to debug
• Encourage developers not to learn SQL
• Are not self-documenting (SQL Queries are self-documenting)
• Carry more performance overhead because ColdFusion has to

do more work
• Limit developers by enforcing variable naming conventions and

functionality

While the use of these tags is acceptable for beginning develop-
ers who do not yet know the basics of SQL and have a tight dead-
line to meet, their use isn’t justifiable for any developer who could
find three or four hours to sit down and learn the basics of SQL
INSERT and UPDATE syntax.

<CFFORM> is a different story. <CFFORM> can be used
(along with nested <CFINPUT> tags) to generate client-side
JavaScript validation for form fields. The JavaScript it generates is

compatible with the majority of Web browsers on the Web, and it
works (you almost never have to debug it). Though it does shield
developers from having to learn and/or write their own
JavaScript, the <CFFORM> tag is an excellent solution for Rapid
Development.

If a form needs more complex validation or validation on form
field types not supported by the <CFINPUT> tag, then developers
will have to write their own validation or look elsewhere for help.
JavaScript manually written by developers can be a bit more
streamlined and functional (as mentioned), but if all a developer’s
needs are more quickly met by using <CFFORM>, then it’s hardly a
bad practice.

I strongly suggest that all developers who want to do form vali-
dation learn JavaScript as soon as they can rather than continue to
rely on <CFFORM> and be bound by its limits. Another advantage
to learning JavaScript is that you’ll find it much easier to learn to
build applications in Flash since its language (ActionScript) is
another ECMA Script–based language.

The lesson here is that it is not always (but can be sometimes) a
terrible practice to let an application automate code generation for
you, but it’s never an excuse not to learn another technology.
Learning not to be dependent on code generators will expand your
possibilities, make you more marketable, and result in more robust
and better thought-out applications.

CF Community —continued from page 7

